Tematem ćwiczenia jest przeanalizowanie przepływu wody przez pompę odśrodkową. Zadanie należy wykonać przy użyciu zaawansowanych modułów Ansys dedykowanych maszynom rotacyjnym. Z powodu periodyczności geometrii wirnika pompy tylko pojedyncza łopatka zostanie zamodelowana w celu zmniejszenia wymaganej liczby elementów siatki, a więc i czasu obliczeń.

Zadania do wykonania

 Wybierz podstawowe parametry pompy potrzebne do jej zaprojektowania (strumień objętości, wysokość podnoszenia, itd.) W tym celu wykorzystaj moduł *Vista CPD* (CPD – Centrifugal Pump Design) dostępny w *Ansys Workbench->Component Systems* (rys. 1). Sprawdź parametry obliczone przez program w zakładce *Results* w celu późniejszego porównania ich z wynikami symulacji numerycznych.

Rys. 1: Moduł do projektowania pomp odśrodkowych Vista CPD.

2. Wyeksportuj dane z modułu *Vista CPD* do modułu *Geometry* (rys. 2). Otwórz moduł *Geometry* i sprawdź geometrię wirnika. W razie nieprawidłowej geometrii wróć do modułu *Vista CPD* i powtórz wcześniejsze kroki. Jeśli geometria jest w porządku zamknij *Geometry*.

•	A					
1	🧱 Vista CPD					
2	Blade Design Vista CPD	× 📰	Edit Import BladeGen File			
		6	Duplicate Transfer Data From New Transfer Data To New	•		
			Create New	•	BG	BladeGen
		4	Update		σ	Volute
			Update Upstream Components			Geometry
			Reset		1	Throughflow Throughflow (BladeGen)
			Properties			
			Add Note			

Rys. 2: Utworzenie geometrii na bazie danych z modułu Vista CPD.

3. Wykonaj siatkę numeryczną "wokół" jednej łopatki wirnika przy wykorzystaniu modułu *TurboGrid* (rys. 3), który został zaprojektowany do tworzenia siatek numerycznych dla maszyn rotacyjnych. Pozostałe łopatki zostaną zamodelowane w module *CFX* za pomocą periodycznych warunków brzegowych. W celu generacji siatki numerycznej odznacz opcję *Suspend Object Updates* w podmenu *Topology Set* (rys. 4). W razie błędów popraw siatkę przez jej edycję (pole *Mesh Data* na rys. 4). Przykładowa siatka numeryczna z widocznymi wszystkimi łopatkami pokazana jest na rys. 5.

Rys. 3: Moduł TurboGrid do tworzenia siatek numerycznych dla maszyn rotacyjnych.

🚾 C2 : TurboGrid - TurboGrid							
File Edit Session Insert Display Tools	s Help						
📕 🖉 🚳 🤊 🤊 🖡 🔜 💻	I () (8) 🛦 🥩 🖪 🛞						
Mesh Geometry							
Hub Tip Inlet Outlet Outline Secondary Flow Paths							
Solution Topology Set (Suspended) Mesh Data (Parent suspended)	Edit						
 Layers (Parent suspended) Hub (Parent suspended) 	Insert +						
Shroud (Parent suspended)	Edit in Command Editor Show Hide Show + Hide All Siblings Delete						
×	Suspend Object Updates						

Rys. 4: Generowanie siatki numerycznej w module TurboGrid.

Rys. 5: Przykładowa siatka numeryczna w module TurboGrid.

Uwaga: Jeśli program zgłasza brak licencji alternatywnym rozwiązaniem jest wykorzystanie modułu *BladeGen* w połączeniu z *Meshing* (rys. 6). Wcześniej należy utworzyć plik *BladeGen* na podstawie modułu *Vista CPD*.

Rys. 6: Alternatywne rozwiązanie przy wykorzystaniu BladeGen i Meshing.

- 4. W module *CFX* zdefiniuj symulację przepływu przez pompę według parametrów ustawionych w module *Vista CPD*. Do tego celu wykorzystaj specjalny tryb *Turbo Mode* (rys. 7).
 - a. Zdefiniuj domeny i warunki brzegowe. Pamiętaj o warunku brzegowym periodyczności.
 Uwaga: W warunkach periodyczności ważne jest, aby wartość strumienia masy z modułu Vista CPD była ustawiana w warunku brzegowym Inlet z opcją Mass Flow Rate Area -> Total For All Sectors.
 - b. Utwórz monitory dla momentu obrotowego wirnika pompy *M* i różnicy ciśnień pomiędzy wylotem i wlotem pompy Δp. Do obliczania Δp użyj metody *massFlowAve*.
 - c. W ustawieniach solvera zaznacz:
 - i. Advection Scheme oraz Turbulence Numerics na High Resolution.
 - ii. Liczbę iteracji na 500
 - iii. Kryterium zbieżności na poziomie 10^{-5}

Rys. 7: Włączenie trybu Turbo Mode w CFX Pre.

- 5. Opracuj wyniki i ilustracje dla symulacji przepływu wody przez pompę.
 - a. Kontury rozkładu ciśnienia, prędkości i wektorów prędkości dla 3 wybranych kątów O (rys. 8).
 - b. Kontury rozkładu zmiennej *YPlus* na łopatce i ściankach wirnika. Czy model turbulencji został poprawnie dobrany? Czy siatka jest poprawna?

Rys. 8: a) Płaszczyzna Turbo, b) Opcja Constant Theta w płaszczyźnie Turbo.

- c. Utwórz parametry wyjściowe z analizy (Expression) obliczające:
 - i. Moc hydrauliczną pompy (z to liczba łopatek)

$$P_h = z\rho g H \dot{Q} \tag{1}$$

ii. Sprawność pompy

$$\eta_h = \frac{P_h}{P} = \frac{z\rho gH\dot{Q}}{zM\omega}$$
(2)

- iii. Wysokość podnoszenia pompy
- 6. Zdefiniuj analizę parametryczną (Parameter Set) dla zmiennego strumienia objętości w celu wykreślenia charakterystyki pompy (5 punktów). Za nominalny strumień objętości wybierz strumień początkowy z modułu *Vista CPD*.
- 7. Opracuj zbiorcze wyniki analizy parametrycznej w formie wykresów:
 - a. Parametrów wyjściowych z modelu w funkcji strumienia objętości.
- 8. Porównaj w tabeli wartości z modułu *Vista CPD* (Head Rise, Shaft Power, Hydraulic Efficiency) z wartościami obliczonymi numerycznie dla przepływu nominalnego.