Rules of courses assessment

Contents

- $1 \ \ {\rm Selected \ problems \ of \ thermal-flow \ processes \ \ computer \ laboratory \ \ \ 2}$
- 2 CFD Simulations of Power Generation Units computer laboratory 4

1 Selected problems of thermal-flow processes - computer laboratory

06 March 2024

Rules of course assessment

Selected problems of thermal-flow processes computer laboratory

Lecturer: Przemysław Błasiak PhD

1. Classes

- Classes are obligatory.
- One absence is permitted. With more absences, the student is removed from the list and receives a fail.
- In case of absence only sick leaves are taken into account.

2. Marks

- The assessment will be based on marks from reports developed on the basis of laboratory classes.
- To pass the course one have to obtain a positive mark from each report.
- The final mark will be the arithmetic mean of the reports.

3. Reports

- Reports have to be prepared according to the template on the website of the lecturer [www]. They are already set in this file Report template
- A report is **only** checked if the "EDIORIAL REQUIREMENTS OF A REPORT" are fulfilled (see here [www]).
- A report that does not contain all the required points is not checked and is then considered as delayed.
- The deadline of reports submission is the last day of the semester (before the exam session).
- The time for report preparation is two weeks. Every next week of delay reduces the mark by a one grade.
- After returning the report by the Teacher, the student has time to correct all errors within one week. If all comments are corrected, the grade is not reduced by a one degree and a proper mark is given without reduction due to the delay. After the second (and third) return of a report the mark is reduced by a one grade.

MARKS SCALE:

Arithmetic mean	Final mark
No positive mark from each report and project	2.0 (fail)
3.00 do 3.25	satisfactory
3.26 do 3.75	satisfactory plus
3.76 do 4.25	good
4.26 do 4.75	good plus
4.76 do 5.00	very good

References

- [1] ANSYS CFX: Tutorials, ANSYS Inc., 2011. [www]
- [2] ANSYS CFX: Introduction, ANSYS Inc., 201. [www]
- [3] ANSYS CFX: Meshing user guide, ANSYS Inc., 2010. [www]
- [4] ANSYS CFX: Solver modeling guide, ANSYS Inc., 2011. [www]
- [5] ANSYS CFX: Reference guide, ANSYS Inc., 2011. [www]
- [6] ANSYS CFX: Solver manager user's guide, ANSYS Inc., 2011. [www]
- [7] ANSYS CFX: Solver theory guide, ANSYS Inc., 2011. [www]
- [8] ANSYS CFX: CFX-Pre user's guide, ANSYS Inc., 2011. [www]

2 CFD Simulations of Power Generation Units - computer laboratory

10 October 2024

Rules of course assessment

CFD SIMULATIONS OF POWER GENERATION UNITS -COMPUTER LABORATORY

Lecturer: Przemysław Błasiak PhD

1. Classes

- Classes are obligatory.
- Two absences are permitted. With more absences, the student is removed from the list and receives a fail.
- In case of absence only sick leaves are taken into account.

2. Marks

- The assessment will be based on marks from reports developed on the basis of laboratory classes.
- To pass the course one have to obtain a positive mark from each report.
- The final mark will be the arithmetic mean of the reports.

3. Reports

- Reports have to be prepared according to the report template.
- A report/project that does not contain all the required points is not checked and is then considered as delayed.
- The deadline of reports submission is the last day of the semester (before the exam session).
- The time for report preparation is governed by the schedule. Every 2 days of delay in handing in the report will result in a grade reduction of one grade. Example: End of exercise: 10.10.2024; Deadline: 16.10.2024 (23:59:59); Grade -1: 18.10.2024 (23:59:59); Grade -2: 20.10.2024 (23:59:59);
- After returning the report by the Teacher, the student has time to correct all errors within one week. If all comments are corrected, the grade is not reduced by a one degree and proper mark is given without reduction due to the delay. After the second (and third) return of a report the mark is reduced by a one grade.

MARKS SCALE:

Arithmetic mean	Final mark
No positive mark from each report	2.0 (fail)
3.00 do 3.25	satisfactory
3.26 do 3.75	satisfactory plus
3.76 do 4.25	good
4.26 do 4.75	good plus
4.76 do 5.00	very good

References

- [1] ANSYS ICEM CFD 11: Tutorial manual, ANSYS Inc., 2007. [www]
- [2] ANSYS CFX: Tutorials, ANSYS Inc., 2011. [www]
- [3] ANSYS CFX: Introduction, ANSYS Inc., 201. [www]
- [4] ANSYS CFX: Meshing user guide, ANSYS Inc., 2010. [www]
- [5] ANSYS CFX: Solver modeling guide, ANSYS Inc., 2011. [www]
- [6] ANSYS CFX: Reference guide, ANSYS Inc., 2011. [www]
- [7] ANSYS CFX: Solver manager user's guide, ANSYS Inc., 2011. [www]
- [8] ANSYS CFX: Solver theory guide, ANSYS Inc., 2011. [www]
- [9] ANSYS CFX: CFX-Pre user's guide, ANSYS Inc., 2011. [www]